Аннотация:
Обзор посвящен систематическому изложению алгебраического подхода к исследованию нелинейных интегрируемых уравнений в частных производных и их дискретных аналогов, основанного на понятии характеристического векторного поля. Особое внимание уделяется уравнениям, интегрируемым в смысле Дарбу, и солитонным уравнениям. Обсуждается проблема построения высших симметрий уравнений, а также их частных и общих решений. В частности показано, что уравнение в частных производных гиперболического типа интегрируется в квадратурах тогда и только тогда, когда его характеристические кольца Ли по обоим характеристическим направлениям имеют конечную размерность. Для гиперболических уравнений, интегрируемых методом обратной задачи, характеристические кольца имеют минимальный рост. Предложены пути применения метода характеристических колец к системам дифференциальных уравнений гиперболического типа с большим, чем два числом характеристических направлений, уравнениям эволюционного типа, а также к обыкновенным дифференциальным уравнениям.
Ключевые слова:характеристическое векторное поле, симметрия, интегрируемость по Дарбу.