Аннотация:
Найдены все частично инвариантные решения уравнений газовой динамики, построенные по конической подалгебре допускаемой моделью. Коническая подалгебра состоит из операторов вращения, переноса по времени и растяжения, а подмодель задается системой обыкновенных дифференциальных уравнений. Решения образуют серию подмоделей, в основе которых лежит коническая подмодель по инвариантной переменной, зависящей от независимых переменных, с постоянными, зависящими от инвариантной функции. Для определения этой зависимости получены различные дополнительные переопределенные уравнения. Получены также две подмодели из системы уравнений с частными производными, расширяющие коническую подмодель. При этом определены все формулы, возвращающие решения в физическое пространство.
Ключевые слова:конические течения, частично инвариантные решения, газовая динамика.