RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2015, том 7, выпуск 3, страницы 125–137 (Mi ufa289)

Эта публикация цитируется в 5 статьях

On an inverse spectral problem for Sturm–Liouville operator with discontinuous coefficient

Kh. R. Mamedova, D. Karahanb

a Science and Letter Faculty, Mathematics Department, Mersin University, 333343, Mersin, Turkey
b Science and Letters Faculty, Mathematics Department, Harran University, Sanliurfa, Turkey

Аннотация: In this paper, the direct and inverse problems for Sturm–Liouville operator with discontinuous coefficient are studied. The spectral properties of the Sturm–Liouville problem with discontinuous coefficient such as the orthogonality of its eigenfunctions and simplicity of its eigenvalues are investigated. Asymptotic formulas for eigenvalues and eigenfunctions of this problem are examined. The resolvent operator is constructed and the expansion formula with respect to eigenfunctions is obtained. It is shown that eigenfunctions of this problem are in the form of a complete system. The Weyl solution and Weyl function are defined. Uniqueness theorems for the solution of the inverse problem according to Weyl function and spectral date are proved.

Ключевые слова: Sturm–Liouville operator, expansion formula, inverse problem, Weyl function.

УДК: 517.984

MSC: 34A55, 34B24, 47E05

Поступила в редакцию: 22.04.2015

Язык публикации: английский


 Англоязычная версия: Ufa Mathematical Journal, 2015, 7:3, 119–131

Реферативные базы данных:


© МИАН, 2024