Аннотация:
Работа посвящена изучению задачи Коши для уравнения $u_{xx}+Q(x)u-P(u)=0$, где $Q(x)$ – $\pi$-периодическая функция. Известно, что для достаточно широкого класса нелинейностей $P(u)$ “бо́льшая часть” решений задачи Коши для этого уравнения является сингулярными, то есть стремящимися к бесконечности в некоторой точке числовой прямой. Ранее в случае $P(u)=u^3$ это обстоятельство позволило предложить подход для полного описания решений этого уравнения, ограниченных на всей числовой прямой. Одним из элементов этого подхода является изучение множества $\mathcal U^+_L$, определяемого как множество тех точек $(u_*,u_*')$ на плоскости начальных данных, для которых решение задачи Коши $u(0)=u_*$, $u_x(0)=u_*'$ не является сингулярным на промежутке $[0;L]$. В данной работе доказывается ряд утверждений о множестве $\mathcal U^+_L$, и на их основании классифицируются возможные типы геометрии таких множеств. Представленные результаты численного счета хорошо согласуются с теоретическими утверждениями.
Ключевые слова:уравнения с периодическими коэффициентами, сингулярные решения, нелинейное уравнение Шредингера.