RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2017, том 9, выпуск 2, страницы 112–121 (Mi ufa379)

Эта публикация цитируется в 1 статье

Third Hankel determinant for the inverse of reciprocal of bounded turning functions has a positive real part of order alpha

B. Venkateswarlua, N. Ranib

a Department of Mathematics, GST, GITAM University, Benguluru Rural Dist-562 163, Karnataka, India
b Department of Sciences and Humanities, Praveenya Institute of Marine Engineering and Maritime studies, Modavalasa- 534 002, Visakhapatnam, A. P., India

Аннотация: Let $RT$ be the class of functions $f(z)$ univalent in the unit disk $E = {z : |z| < 1}$ such that $\mathrm{Re}\, f'(z) > 0$, $z\in E$, and $H_3(1)$ be the third Hankel determinant for inverse function to $f(z)$. In this paper we obtain, first an upper bound for the second Hankel determinant, $|t_2 t_3 - t_4|$, and the best possible upper bound for the third Hankel determinant $H3(1)$ for the functions in the class of inverse of reciprocal of bounded turning functions having a positive real part of order alpha.

Ключевые слова: univalent function, function whose reciprocal derivative has a positive real part, third Hankel determinant, positive real function, Toeplitz determinants.

MSC: 30C45; 30C50

Поступила в редакцию: 29.06.2016

Язык публикации: английский


 Англоязычная версия: Ufa Mathematical Journal, 2017, 9:2, 109–118

Реферативные базы данных:


© МИАН, 2024