Аннотация:
Изучается интерполяционная задача в классе целых функций экспоненциального типа, определяемом некоторой мажорантой из класса сходимости (неквазианалитической мажорантой). В более узком классе, когда мажоранта обладала свойством вогнутости, аналогичная задача ранее рассматривалась Б. Берндсоном, но с узлами в точках некоторой подпоследовательности натуральных чисел. Им был получен критерий разрешимости данной интерполяционной задачи. При этом он впервые применил метод Хёрмандера решения $\overline{\partial}$-задачи. В работах А.И. Павлова, Я. Коревара и М. Диксона интерполяционные последовательности в смысле Б. Берндсона успешно применялись в ряде задач комплексного анализа. При этом была обнаружена некоторая связь с аппроксимативными свойствами систем степеней $\{z^{p_n}\}$ и с известными задачами Полиа и Макинтайра.
В статье установлен критерий интерполяционности в более общем смысле для произвольной последовательности действительных чисел. При доказательстве основной теоремы применяется модифицированный метод Б. Берндсона.
Ключевые слова:интерполяционная последовательность, целая функция, класс сходимости.