Эта публикация цитируется в
1 статье
Quasi-elliptic functions
A. Ya. Khrystiyanyn,
Dz. V. Lukivska Ivan Franko National University of Lviv,
Universytetska str., 1,
79000, Lviv, Ukraine
Аннотация:
We study certain generalizations of elliptic functions, namely quasi-elliptic functions.
Let
$p = e^{i\alpha},$ $q = e^{i\beta},$ $\alpha,\, \beta \in \mathbb{R}.$ A meromorphic in
$\mathbb{C}$ function
$g$ is called quasi-elliptic if there exist
$\omega_1, \omega_2 \in \mathbb{C}^{*},$ $\mathrm{Im}
\frac{\omega_2}{\omega_1} > 0,$ such that
$g(u+\omega_1)=pg(u)$,
$g(u+\omega_2)=qg(u)$
for each
$u\in\mathbb{C}$.
In the case
$\alpha = \beta = 0 \mod 2\pi$ this is a classical theory of elliptic functions. A class of quasi-elliptic functions is denoted by
$\mathcal{QE}.$ We show that the class
$\mathcal{QE}$ is nontrivial. For this class of functions we construct
analogues
$\wp_{\alpha \beta}$,
$\zeta_{\alpha \beta}$ of
$\wp$ and
$\zeta$ Weierstrass functions. Moreover, these analogues are in fact the generalizations of the classical
$\wp$ and
$\zeta$ functions in such a way that the latter can be found among the former by letting
$\alpha=0$ and
$\beta=0$. We also study an analogue of the Weierstrass
$\sigma$ function and establish connections between this function and
$\wp_{\alpha \beta}$ as well as
$\zeta_{\alpha \beta}$.
Let
$q, p \in\mathbb{C}^*,$ $|q|<1.$ A meromorphic in
$\mathbb{C^{*}}$ function
$f$ is said to be
$p$-loxodromic of multiplicator
$q$ if for each
$z
\in \mathbb{C}^{*}$
$f(qz) = pf(z).$ We obtain telations between quasi-elliptic and
$p$-loxodromic functions.
Ключевые слова:
quasi-elliptic function, the Weierstrass
$\wp$-function, the Weierstrass
$\zeta$-function, the Weierstrass
$\sigma$-function,
$p$-loxodromic function.
УДК:
517.53
MSC: 30D30 Поступила в редакцию: 27.09.2016
Язык публикации: английский