Аннотация:
В работе исследуется первая краевая задача в полуполосе для дробно-дифференциального уравнения с оператором Бесселя и частной производной Римана–Лиувилля.
Сформулированы теоремы существования и единственности решения рассматриваемой задачи. Представление решения найдено в терминах интегрального преобразования с функцией Райта в ядре. Доказательство теоремы существования проводится на основе свойств указанного интегрального преобразования и модифицированной функции Бесселя первого рода. Единственность решения доказана в классе функций, удовлетворяющих аналогу условия Тихонова.
В случае когда рассматриваемое уравнение переходит в уравнение диффузии дробного порядка, показано, что полученное решение совпадает с известным решением первой краевой задачи для соответствующего уравнения.
Также рассмотрен случай, когда начальная функция является степенной функцией пространственной координаты. Решение задачи в этом случае выписывается в терминах $H$-функции Фокса.
Ключевые слова:оператор Бесселя, частная производная Римана–Лиувилля, диффузия дробного порядка, функция Райта, интегральное преобразование с функцией Райта в ядре, модифицированная функция Бесселя первого рода, $H$-функция Фокса, условие Тихонова.