Аннотация:
In terms of Berezin symbols, we give new characterizations of the Bloch spaces
$\mathcal{B}$ and $\mathcal{B}_{0}$б Bers-type and the Zygmund-type spaces of
analytic functions on the unit disc $\mathbb{D}$ in the complex plane
$\mathbb{C}$ю We discuss some properties of Toeplitz operators on
the Bergman space $L_{a}^{2}(\mathbb{D})$. We provide a new characterization of certain
function space with variable exponents. Namely, given a function $f(z)=
{\displaystyle\sum\limits_{n=0}^{\infty}}
\widehat{f}(n)z^{n}\in \mathrm{Hol}(\mathbb{D})$ with a bounded
sequence $\left\{ \widehat{f}(n)\right\} _{n\geq0}$ of Taylor coefficients
$\widehat{f}(n)=\frac{f^{(n)}(0)}{n!},$$\left( n=0,1,2,\dots\right) $, we have
$f\in H_{p(\cdot),q(\cdot),\gamma(\cdot)}$ if and only if
$$
\int\limits_{0}^{1}
\left( \frac{1}{2\pi}
{\displaystyle\int\limits_{0}^{2\pi}}
\left\vert \widetilde{D}_{(\widehat{f}(n)e^{int})}(\sqrt{r})\right\vert
^{p(t)}dt\right) ^{\frac{q(t)}{p(t)}}(1-r)^{\frac{\gamma(t)p(t)-q(t)}{p(t)}
}dr<+\infty.
$$
Here $D_{(a_{n})}$ denotes the associate diagonal operator on the
Hardy–Hilbert space $H^{2}$ defined by the formula $D_{(a_{n})}z^{n}=a_{n}z^{n}\text{ }(n=0,1,2,\dots)$.