RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2019, том 11, выпуск 1, страницы 99–112 (Mi ufa464)

Эта публикация цитируется в 5 статьях

Exhaustion by balls and entire functions of bounded $\mathbf{L}$-index in joint variables

A. I. Banduraa, O. B. Skaskivb

a Department of Advanced Mathematics, Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska street, 76019, Ivano-Frankivsk, Ukraine
b Department of Theory of Functions and Probability Theory, Ivan Franko National University of Lviv, 1 Universytetska street, 79000, Lviv, Ukraine

Аннотация: For entire functions of several complex variables, we prove criteria of boundedness of $\mathbf{L}$-index in joint variables. Here $\mathbf{L}: \mathbb{C}^n\to\mathbb{R}^n_+$ is a continuous vector function. The criteria describe local behavior of partial derivatives of entire function on sphere in an $n$-dimensional complex space. Our main result provides an upper bound for maximal absolute value of partial derivatives of entire function on the sphere in terms of the absolute value of the function at the center of the sphere multiplied by some constant. This constant depends only on the radius of sphere and is independent of the location of its center. Some of the obtained results are new even for entire functions with a bounded index in joint variables, i.e., $\mathbf{L}(z)\equiv 1,$ because we use an exhaustion of $\mathbb{C}^n$ by balls instead an exhaustion of $\mathbb{C}^n$ by polydiscs. The ball exhaustion is based on Cauchy's integral formula for a ball. Also we weaken sufficient conditions of index boundedness in our main result by replacing an universal quantifier by an existential quantifier. The polydisc analogues of the obtained results are fundamental in theory of entire functions of bounded index in joint variables. They are used for estimating the maximal absolute value by the minimal absolute value, for estimating partial logarithmic derivatives and distribution of zeroes.

Ключевые слова: entire function, ball, bounded $\mathbf{L}$-index in joint variables, maximum modulus, partial derivative, Cauchy's integral formula, geometric exhaustion.

УДК: 517.555

MSC: 32A15, 32A17, 32A30, 30D15

Поступила в редакцию: 08.08.2017

Язык публикации: английский


 Англоязычная версия: Ufa Mathematical Journal, 2019, 11:1, 100–113

Реферативные базы данных:


© МИАН, 2024