Эта публикация цитируется в
4 статьях
Characteristic function and deficiency of algebroid functions on annuli
Ashok Rathod Department of Mathematics, Karnatak University, Dharwad-580003, India
Аннотация:
In this paper, we develop the value distribution theory for meromorphic functions with maximal deficiency sum for algebroid functions on annuli and we study the relationship between the deficiency of algebroid function on annuli and that of their derivatives. Let
$W(z)$
be an
$\nu$-valued algebroid function on the annulus
$\mathbb{A}\left(\frac{1}{R_{0}},R_{0}\right)$ $(1<R_{0}\leq +\infty)$ with maximal deficiency sum and the order of
$W(z)$ is finite. Then
i. $\limsup\limits_{r\rightarrow\infty}\frac{T_{0}(r,W')}{T_{0}(r,W)}= 2-\delta_{0}(\infty,W)-\theta_{0}(\infty,W);$
ii. $\limsup\limits_{r\rightarrow\infty}\frac{N_{0}(r,\frac{1}{W'})}{T_{0}(r,W')}=0;$
iii. $\frac{1-\delta_{0}(\infty,W)}{2-\delta_{0}(\infty,W)}\leq K_{0}(W')\leq \frac{2(1-\delta_{0}(\infty,W))}{2-\delta_{0}(\infty,W)},$
where
$$K_{0}(W')=\limsup\limits_{r\rightarrow\infty}\frac{N_{0}(r,W')+N_{0}(r,\frac{1}{W'})}{T_{0}(r,W')}.$$
Ключевые слова:
Nevanlinna Theory, maximal deficiency sum, algebroid functions, the annuli.
УДК:
517.53
MSC: 30D35 Поступила в редакцию: 26.10.2017
Язык публикации: английский