Аннотация:
Рассматриваются оценки
преобразования Фурье мер, сосредоточенных на
аналитических гиперповерхностях, содержащих множитель
гашения. В качестве гасителя естественно выбирается степень гауссовой кривизны гиперповерхности. Известно, что если степень гауссовой кривизны достаточно большое положительное число, то преобразование Фурье соответствующей меры убывает оптимально. С.Д. Согги и И.М. Стейном поставлена задача о минимальной степени гауссовой кривизны, гарантирующей оптимальное убывание преобразования Фурье. В статье приведено решение задачи С.Д. Согги и
И.М. Стейна об оптимальном убывании преобразования Фурье мер с
множителем гашения для частного класса семейств
аналитических поверхностей трехмерного евклидова
пространства. Отметим, что степень, указанная в работе, точна не только для семейства аналитических гиперповерхностей, но и для фиксированной аналитической гиперповерхности. Доказательство основных результатов опирается на методы теории аналитических функций, точнее на утверждения типа подготовительной теоремы Вейерштрасса. Как показал Д.М. Оберлин, аналогичные утверждения для бесконечно-гладких гиперповерхностей не имеют место.