RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2020, том 12, выпуск 1, страницы 13–29 (Mi ufa500)

Эта публикация цитируется в 1 статье

О разрешимости и гладкости решения вариационной задачи Дирихле во всем пространстве, связанной с некоэрцитивной формой

С. А. Исхоковab, Б. А. Рахмоновa

a Институт математики Академии наук Республики Таджикистан, ул. Айни, 299/4, 734063, г. Душанбе, Таджикистан
b Мирнинский политехнический институт (филиал) СВФУ им. М.К. Аммосова, ул. Тихонова, 5/1, 678170, г. Мирный, Россия

Аннотация: Исследуется разрешимость вариационной задачи Дирихле для одного класса вырождающихся эллиптических операторов высшего порядка во всем $n$-мерном евклидовом пространстве, коэффициенты которых имеют степенное вырождение на бесконечности. Постановка исследуемой задачи связана с интегро-дифференциальной полуторалинейной формой, которая может не удовлетворять условию коэрцитивности. Ранее вариационная задача Дирихле для вырождающихся эллиптических операторов, связанных с некоэрцитивными формами, исследовалась, в основном, в случае ограниченной области, и применялся метод, основанный на конечном разбиении единицы области. В отличие от этого, в настоящей работе применяется специальное бесконечное разбиение единицы всего евклидова пространства конечной кратности.
Применяемый метод основан на элементах теории пространств дифференцируемых функций многих вещественных переменных со степенным весом. Граничные условия в исследуемой задачи считаются однородными в том смысле, что решение исследуемой задачи ищется в функциональном пространстве, в котором плотно множество бесконечно дифференцируемых финитных функций.
Рассматриваемый дифференциальный оператор зависит от комплексного параметра $\lambda$, и существование и единственность решения вариационной задачи Дирихле доказывается в случае, когда $\lambda$ принадлежит некоторому угловому сектору с вершиной в нуле, содержащим отрицательную часть действительной оси. При дополнительных условиях на гладкость коэффициентов и правой части уравнения изучаются дифференциальные свойства решения исследуемой задачи.

Ключевые слова: вариационная задача Дирихле, эллиптический оператор, степенное вырождение, некоэрцитивная форма, гладкость решения.

УДК: 517.956

MSC: 35J35, 35D30, 35J40, 35J70, 46E35

Поступила в редакцию: 02.09.2019


 Англоязычная версия: Ufa Mathematical Journal, 2020, 12:1, 13–29

Реферативные базы данных:


© МИАН, 2024