RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2020, том 12, выпуск 2, страницы 28–34 (Mi ufa513)

Эта публикация цитируется в 1 статье

О семействах изоспектральных краевых задач Штурма–Лиувилля

О. Э. Мирзаев, А. Б. Хасанов

Самаркандский государственный университет, Университетский бульвар, 15, 140104, г. Самарканд, Узбекистан

Аннотация: Работа посвящена обратной спектральной задаче об описании всех краевых задач Штурма–Лиувилля на конечном отрезке с одним и тем же спектром. Такие краевые задачи называются изоспектральными и были изучены в работах E.L. Isaacson, H.P. McKean, B.E. Dahlberg, E. Trubowitz, M. Jodeit, B.M. Levitan, Y.A. Ashrafyan, T.N. Harutyunyan. В настоящее время имеются разные методы решения обратных спектральных задач: метод оператора преобразования, т.е. метод Гельфанда–Левитана, метод спектральных отображений, метод эталонных моделей и другие. В.А. Марченко показал, что оператор Штурма–Лиувилля на конечном отрезке определяется однозначно по его собственным значениям и последовательности нормирующих констант, т.е. по спектральной функции. И.М. Гельфандом и Б.М. Левитаном были найдены необходимые и достаточные условия восстановления краевых задач Штурма–Лиувилля по их спектральным функциям. Этот метод основан на восстановлении потенциала и краевых условий по спектральным данным с помощью интегрального уравнения Фредгольма второго рода с параметрами. При построении изоспектральных краевых задач Штурма–Лиувилля с заданным спектром $n^{2},n \ge 0$, нами использован метод Гельфанда–Левитана. Основным результатом работы является алгоритм, восстановления семейства краевых задач $L=L(q(x),h, H)$ Штурма–Лиувилля, спектры которых удовлетворяют условию $\sigma(L)=\{n^2,n\ge o\}$ . При этом найденные коэффициенты $ q=q(x, \gamma_1, \gamma_2, \ldots),h=h(\gamma_1, \gamma_2, \ldots),H=H(\gamma_1, \gamma_2, \ldots)$ зависят от бесконечного числа параметров $\gamma_j, j= \overline{1,\infty}$.

Ключевые слова: задача Штурма–Лиувилля, собственные значения, нормирующие константы, спектральные данные, обратная спектральная задача, интегральное уравнение, изоспектральные операторы.

УДК: 512.5

MSC: 34A55, 34K10, 34K29, 47E05, 34B10, 34L40

Поступила в редакцию: 24.10.2019


 Англоязычная версия: Ufa Mathematical Journal, 2020, 12:2, 28–34

Реферативные базы данных:


© МИАН, 2024