RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2020, том 12, выпуск 3, страницы 3–10 (Mi ufa520)

Пуассоновские предельные теоремы в схемах размещения различимых частиц

Ф. А. Абдушукуров

Институт вычислительной математики и информационных технологий, Казанский (поволжский) федеральный университет, ул. Кремлевская, 35, 420008, г. Казань, Россия

Аннотация: Рассматривается случайная величина $\mu_r(n, K, N)$ – число ячеек, содержащих $r$ частиц, среди первых $K$ ячеек в равновероятной схеме размещения не более $n$ различимых частиц по $N$ различным ячейкам. Найдены условия, обеспечивающие сходимость этих случайных величин к пуассоновской случайной величине. Получено описание предельного распределения. Эти условия имеют наиболее простой вид, когда количество частиц $r$ принадлежит ограниченному множеству (2.2) или $K$ эквивалентно $\sqrt{N}$ (теорема 3). Тогда случайные величины $\mu_r(n, K, N)$ ведут себя как суммы независимых одинаково распределенных индикаторов (биномиальные случайные величины), и наши условия совпадают с условиями классической пуассоновской предельной теоремы. Получены аналоги этих теорем для равновероятной схемы размещения $n$ различимых частиц по $N$ различным ячейкам. Доказательства теорем основаны на пуассоновской предельной теореме для сумм перестановочных индикаторов и аналоге локальной предельной теореме Гнеденко.

Ключевые слова: схема размещения различимых частий по различным ячейкам, пуассоновская случайная величина, гауссовская случайная величина, предельная теорема, локальная предельная теорема.

УДК: 517.958

MSC: 60C05, 60F05

Поступила в редакцию: 24.11.2019


 Англоязычная версия: Ufa Mathematical Journal, 2020, 12:3, 3–10

Реферативные базы данных:


© МИАН, 2024