RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2020, том 12, выпуск 4, страницы 92–100 (Mi ufa533)

Эта публикация цитируется в 1 статье

О необходимом и достаточном условии в теории регуляризованных следов

З. Ю. Фазуллин, Н. Ф. Абузярова

Башкирский государственный университет, ул. Заки Валиди, 32, 450076, г. Уфа, Россия

Аннотация: Настоящая работа посвящена изучению формул регуляризованных следов симметрических $L_0$-компактных возмущений дискретного самосопряженного полуограниченного снизу оператора $L_0$ в сепарабельном гильбертовом пространстве. Исследования формул регуляризованных следов возмущений абстрактных самосопряженных дискретных операторов до сих пор, в основном, были направлены на нахождение достаточного условия, при котором равна нулю регуляризованная сумма со скобками с вычетом первой или нескольких поправок теории возмущений. Это условие формулируется в терминах спектральных характеристик невозмущенного оператора $L_0$ в зависимости от принадлежности определенному классу оператора возмущения $V$. В частности, в последнее время интенсивно изучаются формулы следов двумерных модельных операторов математической физики, возмущенных оператором умножения на функцию. Здесь мы исследуем необходимое и достаточное условие для двух случаев: равенства нулю и равенства конечному числу — суммы регуляризованного следа со скобками с вычетом первой поправки теории возмущений. При этом рассматривается конкретная скобка суммирования, которая, как правило, возникает при исследовании формул регуляризованных следов возмущений дифференциальных операторов в частных производных.

Ключевые слова: след оператора, резольвента, формула следов, теория возмущений, дискретный спектр.

УДК: 517.984.4 + 517.547

MSC: 47A55, 47B02, 47B10, 47A10

Поступила в редакцию: 21.08.2020


 Англоязычная версия: Ufa Mathematical Journal, 2020, 12:4, 90–98

Реферативные базы данных:


© МИАН, 2024