RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2020, том 12, выпуск 4, страницы 20–30 (Mi ufa541)

Эта публикация цитируется в 4 статьях

Об оптимизационной обратной спектральной задаче для оператора Штурма–Лиувилля с предопределенным частичным следом

Н. Ф. Валеев, Я. Ш. Ильясов

Институт математики с ВЦ УФИЦ РАН, ул. Чернышевского, 112, 450008, г. Уфа, Россия

Аннотация: Данная работа направлена на исследование оптимизационных обратных спектральных задач с так называемыми неполными спектральными данными. В качестве неполных спектральных данных рассматриваются частичные следы оператора Штурма–Лиувилля. В работе изучается следующая формулировка обратной спектральной задачи с неполными данными (оптимизационная задача): найти потенциал $ \hat{V} $, ближайший в некоторой норме к заданной функции $V_0$, такой, что частичный след оператора Штурма–Лиувилля с потенциалом $\hat{V}$ имел бы заданное значение. В основном результате работы мы доказываем теорему существования и единственности решений этой оптимизационной обратной спектральной задачи. При этом устанавливается новый тип связи между линейными спектральными задачами и системами нелинейных дифференциальных уравнений. Это позволяет найти решение оптимизационной обратной спектральной задачи путем решения системы нелинейных дифференциальных уравнений и получить новый результат о разрешимости системы нелинейных дифференциальных уравнений. Для доказательства единственности решений использовано свойство выпуклости частичного следа оператора Штурма–Лиувилля с потенциалом $\hat{V}$, как функционала от потенциала $\hat{V}$. В работе получено новое обобщение неравенства Лидского–Виландта на произвольные самосопряженные полуограниченные операторы с дискретным спектром.

Ключевые слова: спектральная теория дифференциальных операторов, обратная спектральная задача, вариационные задачи, неравенства для собственных значений.

УДК: 517.4+519.71

MSC: 34L05, 34L30, 34A55

Поступила в редакцию: 29.10.2020


 Англоязычная версия: Ufa Mathematical Journal, 2020, 12:4, 19–29

Реферативные базы данных:


© МИАН, 2024