RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2021, том 13, выпуск 1, страницы 131–136 (Mi ufa551)

On geometric properties of Morrey spaces

H. Gunawan, D. I. Hakim, A. S. Putri

Faculty of Mathematics and Natural Sciences, Jalan Ganesha No. 10, Bandung, 40132, Indonesia

Аннотация: The study of Morrey spaces is motivated by many reasons. Initially, these spaces were introduced in order to understand the regularity of solutions to elliptic partial differential equations [1]. In line with this, many authors study the boundedness of various integral operators on Morrey spaces. In this article, we are interested in their geometric properties, from functional analysis point of view. We show constructively that Morrey spaces are not uniformly non-$\ell^1_n$ for any $n\ge 2$. This result is sharper than earlier results, which showed that Morrey spaces are not uniformly non-square and also not uniformly non-octahedral. We also discuss the $n$-th James constant $C_{\mathrm{J}}^{(n)}(X)$ and the $n$-th Von Neumann-Jordan constant $C_{\mathrm{NJ}}^{(n)}(X)$ for a Banach space $X$, and obtain that both constants for any Morrey space $\mathcal{M}^p_q(\mathbb{R}^d)$ with $1\le p<q<\infty$ are equal to $n$.

Ключевые слова: Morrey spaces, uniformly non-$\ell^1_n$-ness, $n$-th James constant, $n$-th Von Neumann-Jordan constant.

УДК: 517.958

MSC: 46B20, 42B35

Поступила в редакцию: 07.05.2020

Язык публикации: английский


 Англоязычная версия: Ufa Mathematical Journal, 2021, 13:1, 131–136

Реферативные базы данных:


© МИАН, 2024