RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2021, том 13, выпуск 2, страницы 112–120 (Mi ufa556)

Differential substitutions for non-Abelian equations of KdV type

V. E. Adler

L.D. Landau Institute for Theoretical Physics, Akademika Semenova av., 1A, 142432, Chernogolovka, Moscow Region, Russia

Аннотация: The work is devoted to constructing differential substitutions connecting the non-Abelian KdV equation with other third-order evolution equations. One of the main results is the construction of a non-Abelian analog of the exponential Calogero–Degasperis equation in a rational form. Some generalizations of the Schwarzian KdV equation are also obtained. Equations and differential substitutions under study contain arbitrary non-Abelian parameters. The construction method is based on the auxiliary linear problem for KdV, in which the usual spectral parameter is replaced by a non-Abelian one. The wave function, corresponding to a fixed value of this parameter, also satisfies a certain evolution equation. Passing to the left and right logarithmic derivatives of the wave function leads one to two versions of the modified KdV equation. In addition, a gauge transformation of the original linear problem leads to a linear problem for one of these versions, mKdV-2. After that, the described procedure is repeated, and the resulting evolution equation for the wave function contains already two arbitrary non-Abelian parameters. For the logarithmic derivative, we obtain an analog of the Calogero–Degasperis equation, which is thus a second modification of the KdV equation. Combining the found Miura-type transformations with discrete symmetries makes it possible to obtain chains of Bäcklund transformations for the modified equations.

Ключевые слова: non-Abelian equation, Lax pair, Miura transformation.

УДК: 517.957 : 517.958

MSC: 35Q53, 37K30, 37K35

Поступила в редакцию: 10.03.2021

Язык публикации: английский


 Англоязычная версия: Ufa Mathematical Journal, 2021, 13:2, 107–114

Реферативные базы данных:


© МИАН, 2024