RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2021, том 13, выпуск 2, страницы 6–10 (Mi ufa557)

Об интегрируемости $O(3)$–модели

А. Б. Борисов

Институт физики металлов им. М.Н. Михеева УрО РАН, ул. Софьи Ковалевской, 18, 620108, г. Екатеринбург, Россия

Аннотация: Трехмерная $O(3)$ модель для единичного вектора $\mathbf{n}(\mathbf{r})$ имеет многочисленные применения в теории поля и физике конденсированных сред. Показано, что эта модель интегрируема при некоторой дифференциальной связи (определенных ограничениях на градиенты полей $\Theta(\mathbf{r})$, $\Phi(\mathbf{r})$, параметризующих вектор $\mathbf{n}(\mathbf{r})$). При наличии дифференциальной связи уравнения модели редуцируются к одномерному уравнению sin–Gordon, определяющему зависимость поля $\Theta(\mathbf{r})$ от вспомогательного поля $a(\mathbf{r})$, и систему двух уравнений $(\nabla S)(\nabla S)=0$, $\Delta S =0$ для комплекснозначной функции $S(\mathbf{r})=a(\mathbf{r}) + \mathrm{i} \Phi(\mathbf{r})$. Показано, что непосредственное решение этой системы дает все известные ранее точные решения модели: двумерные магнитные инстантоны и трехмерные структуры типа «ежей». Найдено точное уравнений для поля $S(\mathbf{r})$ в виде произвольной неявной функции от двух переменных, которое сразу дает вид решения для полей $\Theta(\mathbf{r})$, $\Phi(\mathbf{r})$ в неявном виде. Показано, что найденное таким образом точное решение системы для поля $S(\mathbf{r})$ приводит к точному решению уравнений $O(3)$–модели в виде произвольной неявной функции от двух переменных.

Ключевые слова: интегрируемая система, $O(3)$–модель, дифференциальная подстановка, квазилинейное уравнение, общее решение.

УДК: 517.9

MSC: 35C05, 35J60, 35A08

Поступила в редакцию: 10.03.2021


 Англоязычная версия: Ufa Mathematical Journal, 2021, 13:2, 3–7

Реферативные базы данных:


© МИАН, 2024