RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2021, том 13, выпуск 2, страницы 121–140 (Mi ufa560)

On mKdV equations related to Kac-Moody algebras $A_5^{(1)}$ and $A_5^{(2)}$

V. S. Gerdjikovabcd

a Institute of Mathematics and Informatics Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 8, 1113, Sofia, Bulgaria
b Sankt-Petersburg State University of Aerospace Instrumentation B. Morskaya, 67A, 190000, St-Petersburg, Russia
c Institute for Advanced Physical Studies, 111 Tsarigradsko chaussee, 1784, Sofia, Bulgaria
d Institute for Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Blvd., 1784, Sofia, Bulgaria

Аннотация: We outline the derivation of the mKdV equations related to the Kac–Moody algebras $A_5^{(1)}$ and $A_5^{(2)}$. First we formulate their Lax representations and provide details how they can be obtained from generic Lax operators related to the algebra $sl(6)$ by applying proper Mikhailov type reduction groups $\mathbb{Z}_h$. Here $h$ is the Coxeter number of the relevant Kac–Moody algebra. Next we adapt Shabat's method for constructing the fundamental analytic solutions of the Lax operators $L$. Thus we are able to reduce the direct and inverse spectral problems for $L$ to Riemann–Hilbert problems (RHP) on the union of $2h$ rays $l_\nu$. They leave the origin of the complex $\lambda$-plane partitioning it into equal angles $\pi/h$. To each $l_\nu$ we associate a subalgebra $\mathfrak{g}_\nu$ which is a direct sum of $sl(2)$–subalgebras. In this way, to each regular solution of the RHP we can associate scattering data of $L$ consisting of scattering matrices $T_\nu \in \mathcal{G}_\nu$ and their Gauss decompositions. The main result of the paper states how to find the minimal sets of scattering data $\mathcal{T}_k$, $k=1,2$, from $T_0$ and $T_1$ related to the rays $l_0$ and $l_1$. We prove that each of the minimal sets $\mathcal{T}_1$ and $\mathcal{T}_2$ allows one to reconstruct both the scattering matrices $T_\nu$, $\nu =0, 1, \dots 2h$ and the corresponding potentials of the Lax operators $L$.

Ключевые слова: mKdV equations, Kac–Moody algebras, Lax operators, minimal sets of scattering data.

MSC: 17B67, 35P25, 35Q15, 35Q53

Поступила в редакцию: 12.04.2021

Язык публикации: английский


 Англоязычная версия: Ufa Mathematical Journal, 2021, 13:2, 115–134

Реферативные базы данных:


© МИАН, 2024