RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2021, том 13, выпуск 3, страницы 37–44 (Mi ufa575)

Эта публикация цитируется в 11 статьях

Гиперболические дифференциально-разностные уравнения с нелокальными потенциалами общего вида

Н. В. Зайцева

Московский государственный университет имени М.В. Ломоносова, Ленинские горы 1, строение 52, 119991, г. Москва, Россия

Аннотация: Для двумерного гиперболического дифференциально-разностного уравнения, рассматриваемого в полуплоскости, содержащего сумму дифференциального оператора и операторов сдвига по пространственной переменной, изменяющейся на всей вещественной оси, (или дифференциально-разностного уравнения с нелокальными потенциалами) построено трехпараметрическое семейство гладких решений. Все сдвиги в потенциалах по пространственной переменной – произвольные вещественные величины, никакие условия соизмеримости на них не накладываются. Это является наиболее общим случаем.
В настоящее время достаточно полно исследованы эллиптические и параболические функционально-дифференциальные уравнения, и в частности, дифференциально-разностные уравнения. Цель настоящей работы – исследовать гиперболические дифференциально-разностные уравнения с операторами сдвига по пространственной переменной, которые, насколько нам известно, ранее не были изучены. Природа физических задач, приводящих к таким уравнениям, принципиально отличается от задач для классических уравнений математической физики. Для построения решений используется классическая операционная схема, согласно которой к уравнению формально применяются сначала прямое, а затем обратное преобразования Фурье. Однако, если в классическом случае применение преобразования Фурье приводит к исследованию полиномов относительно двойственной переменной, то в данном случае, с учетом того, что в образах Фурье оператор сдвига является мультипликатором, символ дифференциально-разностного оператора представляет собой уже не полином, а комбинацию степенной функции и тригонометрических функций с несоизмеримыми аргументами. Это привело к вычислительным трудностям и совершенно иным эффектам в решении. Вообще говоря, данная схема приводит к решениям в смысле обобщенных функций. Однако, в данном случае удается доказать, что полученные решения являются классическими.
Доказана теорема о том, что если вещественная часть символа дифференциально-разностного оператора по пространственной переменной, входящего в уравнение, положительна, то построенные решения являются классическими. Приведены классы уравнений, для которых указанное условие выполнено. Получены соотношения, которым должны удовлетворять все коэффициенты и все сдвиги в уравнении, справедливость которых гарантирует требуемую положительность вещественной части символа дифференциально-разностного оператора в уравнении.

Ключевые слова: гиперболическое уравнение, дифференциально-разностное уравнение, несоизмеримые сдвиги, классическое решение.

УДК: 517.956.32+517.929

MSC: 35R10, 35L10

Поступила в редакцию: 26.02.2021


 Англоязычная версия: Ufa Mathematical Journal, 2021, 13:3, 36–43

Реферативные базы данных:


© МИАН, 2024