RUS  ENG
Полная версия
ЖУРНАЛЫ // Уфимский математический журнал // Архив

Уфимск. матем. журн., 2022, том 14, выпуск 1, страницы 57–83 (Mi ufa601)

Эта публикация цитируется в 3 статьях

О вырожденности орбит нильпотентных алгебр Ли

А. В. Лободаa, В. К. Каверинаb

a ФГБОУ ВО «Воронежский государственный технический университет», Московский пр., 14, 394026, г. Воронеж, Россия
b ФГОБУ ВО «Финансовый университет при Правительстве Российской Федерации», Ленинградский пр., д. 49, 125993, г. Москва, Россия

Аннотация: В связи с задачей описания голоморфно однородных вещественных гиперповерхностей в статье обсуждаются $7$-мерные орбиты в $ \Bbb C^4 $ двух семейств нильпотентных $7$-мерных алгебр Ли. Подобно нильпотентным $5$-мерным алгебрам голоморфных векторных полей в $ \Bbb C^3 $ большая часть из рассмотренных в статье алгебр не имеет невырожденных по Леви орбит. В частности, отсутствие таких орбит доказано для семейства разложимых $7$-мерных нильпотентных алгебр Ли ($31$ алгебра).
В то же время в семействе из $12$ неразложимых $7$-мерных нильпотентных алгебр Ли, каждая из которых содержит не менее трех абелевых $4$-мерных идеалов, четыре алгебры имеют невырожденные орбиты. У двух алгебр эти гиперповерхности голоморфно эквивалентны квадрикам, а несферические невырожденные орбиты еще двух алгебр представляют собой два голоморфно неэквивалентных обобщения (на случай $4$-мерного комплексного пространства) известной поверхности Винкельманна из пространства $ \Bbb C^3 $. Все орбиты алгебр из второго семейства допускают трубчатые реализации.

Ключевые слова: однородное многообразие, голоморфная функция, векторное поле, алгебра Ли, абелев идеал.

УДК: 517.518

MSC: 32M12, 32A10, 17B66, 14H10, 13A15

Поступила в редакцию: 02.03.2021


 Англоязычная версия: Ufa Mathematical Journal, 2022, 14:1, 52–76


© МИАН, 2024