Аннотация:
Исследуются вопросы, связанные с теоремами типа Левинсона-Шёберга-Волфа в комплексном анализе, в частности, обсуждается известный вопрос, поставленный в 70-е годы Е.М. Дынькиным об эффективной оценке мажоранты роста аналитической функции вблизи множества особых точек и другая близкая проблема о скорости стремления к нулю экстремальной функции в неквазианалитическом классе Карлемана в окрестности точки, где все производные функций из этого класса обращаются в нуль. Точные асимптотические оценки наилучшей мажоранты роста вблизи особенностей были найдены В. Мацаевым и М. Содиным в 2002 году.
Некоторые оценки (как сверху, так и снизу) для экстремальной функции в классе Карлемана в 2018 году были получены А.М. Гайсиным, но они оказались не очень близкими к истинной величине этой функции. В настоящей статье получены точные двусторонние оценки для экстремальной функции.
Ключевые слова:неквазианалитический класс Карлемана, теоремы типа Левинсона-Шёберга, экстремальная функция, регулярная последовательность, ассоциированный вес.