Аннотация:
Рассмотрена классическая постановка задачи Дирихле для сильно эллиптической системы второго порядка с постоянными коэффициентами в жордановых областях на плоскости. Показано, что решение задачи представляется в виде функционального ряда по степеням параметра, определяющего отклонение оператора системы от лапласиана. Этот ряд сходится равномерно в замыкании области в предположении, что граница области и заданная на ней граничная функция удовлетворяют достаточным условиям регулярности: композиция следа конформного отображения области на круг и граничной функции принадлежит классу Гельдера с показателем больше, чем 1/2.
Ключевые слова:сильно эллиптическая система, задача Дирихле, метод возмущений.