Аннотация:
Теорема вириала имеет отношение к поведению связанных состояний при преобразовании пространственного растяжения (дилатации). Это видно, в частности, из формулировки, приведённой в книге Ландау и Лифшица, где релятивистская теорема вириала выражается через след тензора энергии-импульса. В данной статье предлагается гамильтонов подход к описанию дилатации, в котором релятивистская теорема вириала возникает естественным образом как условие стабильности относительно преобразований растяжения. Связанное состояние становится масштабно-инвариантным в ультрарелятивистском пределе, когда его полная энергия стремится к нулю. Однако для таких сильно релятивистских связанных состояний масштабная инвариантность нарушается квантовыми эффектами и теорема вириала должна учитывать аномалию следа тензора энергии-импульса. При этом теорема вириала в квантовой теории поля оказывается непосредственно связанной с уравнениями Каллана – Симанзика. Мы рассмотрим применение теоремы вириала в квантовой электродинамике, а также в хромодинамике (КХД) на примере известной модели “мешка” в теории адронов. В КХД с безмассовыми кварками, согласно теореме вириала, $3/4$ адронной массы соответствуют кваркам и глюонам, а $1/4$ обусловлена аномалией.
PACS:03.30.+p, 11.10.St, 12.38.Aw, 12.39.Ba
Поступила:7 февраля 2013 г. Одобрена в печать: 27 февраля 2013 г.