RUS  ENG
Полная версия
ЖУРНАЛЫ // Успехи физических наук // Архив

УФН, 2001, том 171, приложение к № 10, страницы 65–68 (Mi ufn5632)

Эта публикация цитируется в 2 статьях

Quantum dots and wells, mesoscopic networks

Mesoscopic physics on graphs

G. Montambaux

Laboratoire de Physique des Solides, associé au CNRS, Université Paris-Sud, 91405 Orsay Cedex, France

Аннотация: This report is a summary of recent work on the properties of phase coherent diffusive conductors, especially in the geometry of networks — also called graphs — made of quasi-$\mathrm{1D}$ diffusive wires. These properties are written as a function of the spectral determinant of the diffusion equation (the product of its eigenvalues). For a network with $N$ nodes, this spectral determinant is related to the determinant of an $N\times N$ matrix which describes the connectivity of the network. I also consider the transmission through networks made of $\mathrm{1D}$ ballistic wires and show how the transmission coefficient can be written in terms of an $N\times N$ matrix very similar to the above one. Finally I present a few considerations on the relation between the magnetism of noninteracting systems and the magnetism of interacting diffusive systems.

PACS: 73.63.-b, 73.21.-b, 68.65.-k, 71.35.-y

Язык публикации: английский


 Англоязычная версия: Physics–Uspekhi, 2001, 44:10 suppl., s65–s68

Реферативные базы данных:


© МИАН, 2024