Аннотация:
На протяжении двух лет я занимался боровскими орбитами и пришел к выводу, что развить их в общую квантовую механику безнадежно. В это время Гейзенберг предложил свою матричную механику, и мне вдруг стало ясно, что ключом к решению проблемы служит некоммутативная алгебра. Вскоре Шредингер разработал волновую механику и показал, что она эквивалентна теории Гейзенберга.
Основываясь на этих теориях, я развил общую теорию преобразований, которую можно было применять при вычислении вероятностей любых коммутирующих динамических переменных. Это доставило мне большое удовлетворение.
Для построения релятивистской теории частицы имелось волновое уравнение Клейна – Гордона, квадратичное по $\partial/\partial t$. В то время оно удовлетворяло большинство физиков. Мне же оно не нравилось, потому что я был очень привязан к своей теории преобразований, которая требовала, чтобы уравнение было линейным по $\partial/\partial t$. Эта неудовлетворенность заставила меня продолжить поиски нового релятивистского волнового уравнения. Наконец, я нашел уравнение, линейное по $\partial/\partial t$ и совместимое с моей теорией преобразований. Оно автоматически привело к спину $h/2$ и к правильному значению магнитного момента электрона. Эти результаты были неожиданными для меня.