Estimates of best approximations of functions with logarithmic smoothness in the Lorentz space with anisotropic norm
Gabdolla Akishevab a L.N. Gumilyov Eurasian National University
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Аннотация:
In this paper, we consider the anisotropic Lorentz space
$L_{\bar{p}, \bar\theta}^{*}(\mathbb{I}^{m})$ of periodic functions of
$m$ variables. The Besov space
$B_{\bar{p}, \bar\theta}^{(0, \alpha, \tau)}$ of functions with logarithmic smoothness is defined. The aim of the paper is to find an exact order of the best approximation of functions from the class
$B_{\bar{p}, \bar\theta}^{(0, \alpha, \tau)}$ by trigonometric polynomials under different relations between the parameters
$\bar{p}, \bar\theta,$ and
$\tau$.
The paper consists of an introduction and two sections. In the first section, we establish a sufficient condition for a function $f\in L_{\bar{p}, \bar\theta^{(1)}}^{*}(\mathbb{I}^{m})$ to belong to the space
$L_{\bar{p}, \theta^{(2)}}^{*}(\mathbb{I}^{m})$ in the case
$1{<\theta^{2}<\theta_{j}^{(1)}},$ ${j=1,\ldots,m},$ in terms of the best approximation and prove its unimprovability on the class $E_{\bar{p},\bar{\theta}}^{\lambda}=\{f\in L_{\bar{p},\bar{\theta}}^{*}(\mathbb{I}^{m})\colon
{E_{n}(f)_{\bar{p},\bar{\theta}}\leq\lambda_{n},}$
${n=0,1,\ldots\},}$
where
$E_{n}(f)_{\bar{p},\bar{\theta}}$ is the best approximation of the function $f \in L_{\bar{p},\bar{\theta}}^{*}(\mathbb{I}^{m})$ by trigonometric polynomials of order
$n$ in each variable
$x_{j},$ $j=1,\ldots,m,$ and
$\lambda=\{\lambda_{n}\}$ is a sequence of positive numbers
$\lambda_{n}\downarrow0$ as
$n\to+\infty$.
In the second section, we establish order-exact estimates for the best approximation of functions from the class $B_{\bar{p}, \bar\theta^{(1)}}^{(0, \alpha, \tau)}$ in the space
$L_{\bar{p}, \theta^{(2)}}^{*}(\mathbb{I}^{m})$.
Ключевые слова:
Lorentz space, Nikol'skii-Besov class, best approximation.
Язык публикации: английский
DOI:
10.15826/umj.2020.1.002