RUS  ENG
Полная версия
ЖУРНАЛЫ // Ural Mathematical Journal // Архив

Ural Math. J., 2020, том 6, выпуск 2, страницы 15–24 (Mi umj122)

Эта публикация цитируется в 1 статье

Hahn's problem with respect to some perturbations of the raising operator $(X-c)$

Baghdadi Aloui, Jihad Souissi

Université de Gabès

Аннотация: In this paper, we study the Hahn's problem with respect to some raising operators perturbed of the operator $X-c$, where $c$ is an arbitrary complex number. More precisely, the two following characterizations hold: up to a normalization, the $q$-Hermite (resp. Charlier) polynomial is the only $H_{\alpha,q}$-classical (resp. \linebreak $\mathcal{S}_{\lambda}$-classical) orthogonal polynomial, where $H_{\alpha, q}:=X+\alpha H_q$ and $\mathcal{S}_{\lambda}:=(X+1)-\lambda\tau_{-1}$.

Ключевые слова: orthogonal polynomials, linear functional, $\mathcal{O}$-classical polynomials, Raising operators, $q$-Hermite polynomials, Charlier polynomials.

Язык публикации: английский

DOI: 10.15826/umj.2020.2.002



Реферативные базы данных:


© МИАН, 2024