RUS  ENG
Полная версия
ЖУРНАЛЫ // Ural Mathematical Journal // Архив

Ural Math. J., 2021, том 7, выпуск 1, страницы 96–101 (Mi umj140)

Эта публикация цитируется в 1 статье

Definite integral of logarithmic functions and powers in terms of the lerch function

Robert Reynolds, Allan Stauffer

York University

Аннотация: A family of generalized definite logarithmic integrals given by
$$ \int_{0}^{1}\frac{\left(x^{ i m} (\log (a)+i \log (x))^k+x^{-i m} (\log (a)-i \log (x))^k\right)}{(x+1)^2}dx $$
built over the Lerch function has its analytic properties and special values listed in explicit detail. We use the general method as given in [5] to derive this integral. We then give a number of examples that can be derived from the general integral in terms of well known functions.

Ключевые слова: entries of Gradshteyn and Ryzhik, Lerch function, Knuth's Series.

Язык публикации: английский

DOI: 10.15826/umj.2021.1.008



Реферативные базы данных:


© МИАН, 2024