Аннотация:
A family of generalized definite logarithmic integrals given by $$ \int_{0}^{1}\frac{\left(x^{ i m} (\log (a)+i \log (x))^k+x^{-i m} (\log (a)-i \log (x))^k\right)}{(x+1)^2}dx $$ built over the Lerch function has its analytic properties and special values listed in explicit detail. We use the general method as given in [5] to derive this integral. We then give a number of examples that can be derived from the general integral in terms of well known functions.
Ключевые слова:entries of Gradshteyn and Ryzhik, Lerch function, Knuth's Series.