RUS  ENG
Полная версия
ЖУРНАЛЫ // Ural Mathematical Journal // Архив

Ural Math. J., 2022, том 8, выпуск 2, страницы 4–12 (Mi umj168)

Эта публикация цитируется в 1 статье

Bessel polynomials and some connection formulas in terms of the action of linear differential operators

Baghdadi Aloui, Jihad Souissi

University of Gabes

Аннотация: In this paper, we introduce the concept of the $\mathbb{B}_{\alpha}$-classical orthogonal polynomials, where $\mathbb{B}_{\alpha}$ is the raising operator $\mathbb{B}_{\alpha}:=x^2 \cdot {d}/{dx}+\big(2(\alpha-1)x+1\big)\mathbb{I}$, with nonzero complex number $\alpha$ and $\mathbb{I}$ representing the identity operator. We show that the Bessel polynomials $B^{(\alpha)}_n(x),\ n\geq0$, where $\alpha\neq-{m}/{2}, \ m\geq -2, \ m\in \mathbb{Z}$, are the only $\mathbb{B}_{\alpha}$-classical orthogonal polynomials. As an application, we present some new formulas for polynomial solution.

Ключевые слова: classical orthogonal polynomials, linear functionals, Bessel polynomials, raising operators, connection formulas.

Язык публикации: английский

DOI: 10.15826/umj.2022.2.001



Реферативные базы данных:


© МИАН, 2024