RUS  ENG
Полная версия
ЖУРНАЛЫ // Ural Mathematical Journal // Архив

Ural Math. J., 2023, том 9, выпуск 1, страницы 135–146 (Mi umj194)

Эта публикация цитируется в 4 статьях

Fixed ratio polynomial time approximation algorithm for the Prize-Collecting Asymmetric Traveling Salesman Problem

Ksenia  Ryzhenko, Katherine  Neznakhina, Michael  Khachay

N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Аннотация: We develop the first fixed-ratio approximation algorithm for the well-known Prize-Collecting Asymmetric Traveling Salesman Problem, which has numerous valuable applications in operations research. An instance of this problem is given by a complete node- and edge-weighted digraph $G$. Each node of the graph $G$ can either be visited by the resulting route or skipped, for some penalty, while the arcs of $G$ are weighted by non-negative transportation costs that fulfill the triangle inequality constraint. The goal is to find a closed walk that minimizes the total transportation costs augmented by the accumulated penalties. We show that an arbitrary $\alpha$-approximation algorithm for the Asymmetric Traveling Salesman Problem induces an $(\alpha+1)$-approximation for the problem in question. In particular, using the recent $(22+\varepsilon)$-approximation algorithm of V. Traub and J. Vygen that improves the seminal result of O. Svensson, J. Tarnavski, and L. Végh, we obtain $(23+\varepsilon)$-approximate solutions for the problem.

Ключевые слова: Prize-Collecting Traveling Salesman Problem, triangle inequality, approximation algorithm, fixed approximation ratio.

Язык публикации: английский

DOI: 10.15826/umj.2023.1.012



Реферативные базы данных:


© МИАН, 2024