RUS  ENG
Полная версия
ЖУРНАЛЫ // Ural Mathematical Journal // Архив

Ural Math. J., 2023, том 9, выпуск 1, страницы 147–152 (Mi umj195)

Hyers–Ulam–Rassias stability of nonlinear differential equations with a generalized actions on the right-hand side

Alexander N. Sesekin, Anna D. Kandrina

Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Аннотация: The paper considers the Hyers–Ulam–Rassias stability for systems of nonlinear differential equations with a generalized action on the right-hand side, for example, containing impulses — delta functions. The fact that the derivatives in the equation are considered distributions required a correction of the well-known Hyers–Ulam–Rassias definition of stability for such equations. Sufficient conditions are obtained that ensure the property under study.

Ключевые слова: Hyers–Ulam–Rassias stability, differential equations, generalized actions, discontinuous trajectories.

Язык публикации: английский

DOI: 10.15826/umj.2023.1.013



Реферативные базы данных:


© МИАН, 2024