On one Zalcman problem for the mean value operator
Natalia P. Volchkovaa,
Vitaliy V. Volchkovb a Donetsk National Technical University
b Donetsk State University
Аннотация:
Let
$\mathcal{D}'(\mathbb{R}^n)$ and
$\mathcal{E}'(\mathbb{R}^n)$ be the spaces of distributions and compactly supported distributions on
$\mathbb{R}^n$,
$n\geq 2$, respectively, let
$\mathcal{E}'_{\natural}(\mathbb{R}^n)$ be the space of all radial (invariant under rotations of the space
$\mathbb{R}^n$) distributions in
$\mathcal{E}'(\mathbb{R}^n)$, let
$\widetilde{T}$ be the spherical transform (Fourier–Bessel transform) of a distribution
$T\in\mathcal{E}'_{\natural}(\mathbb{R}^n)$, and let
$\mathcal{Z}_{+}(\widetilde{T})$ be the set of all zeros of an even entire function
$\widetilde{T}$ lying in the half-plane
$\mathrm{Re} \, z\geq 0$ and not belonging to the negative part of the imaginary axis. Let
$\sigma_{r}$ be the surface delta
function concentrated on the sphere
$S_r=\{x\in\mathbb{R}^n: |x|=r\}$. The problem of L. Zalcman on reconstructing a distribution
$f\in \mathcal{D}'(\mathbb{R}^n)$ from known convolutions
$f\ast \sigma_{r_1}$ and
$f\ast \sigma_{r_2}$ is studied. This problem is correctly posed only
under the condition
$r_1/r_2\notin M_n$, where
$M_n$ is the set of all possible ratios of positive
zeros of the Bessel function
$J_{n/2-1}$. The paper shows that if
$r_1/r_2\notin M_n$, then an
arbitrary distribution
$f\in \mathcal{D}'(\mathbb{R}^n)$ can be expanded into an unconditionally
convergent series
$$
f=\sum\limits_{\lambda\in\mathcal{Z}_{+}(
\widetilde{\Omega}_{r_1})}\,\,\, \sum\limits_{\mu\in\mathcal{Z}_+(\widetilde{\Omega}_{r_2})}
\frac{4\lambda\mu}{(\lambda^2-\mu^2)
\widetilde{\Omega}_{r_1}^{\,\,\,\displaystyle{'}}(\lambda)\widetilde{\Omega}_{r_2}^{\,\,\,\displaystyle{'}}(\mu)}\Big
(P_{r_2} (\Delta)
\big((f\ast\sigma_{r_2})\ast \Omega_{r_1}^{\lambda}\big)
-P_{r_1} (\Delta)
\big((f\ast\sigma_{r_1})\ast \Omega_{r_2}^{\mu}\big)\Big)
$$
in the space
$\mathcal{D}'(\mathbb{R}^n)$, where
$\Delta$ is the Laplace
operator in
$\mathbb{R}^n$,
$P_r$ is an explicitly given polynomial of degree
$[(n+5)/4]$, and
$\Omega_{r}$ and
$\Omega_{r}^{\lambda}$ are explicitly constructed radial distributions supported
in the ball
$ |x|\leq r$. The proof uses the methods of harmonic analysis, as well as the theory of
entire and special functions. By a similar technique, it is possible to obtain inversion formulas
for other convolution operators with radial distributions.
Ключевые слова:
compactly supported distributions, Fourier–Bessel transform, two-radii theorem, inversion formulas.
Язык публикации: английский
DOI:
10.15826/umj.2023.1.017