RUS  ENG
Полная версия
ЖУРНАЛЫ // Ural Mathematical Journal // Архив

Ural Math. J., 2016, том 2, выпуск 2, страницы 72–86 (Mi umj22)

Эта публикация цитируется в 2 статьях

Regularization of Pontryagin maximum principle in optimal control of distributed systems

Mikhail I. Sumin

Nizhnii Novgorod State University, Nizhnii Novgorod, Russia

Аннотация: This article is devoted to studying dual regularization method applied to parametric convex optimal control problem of controlled third boundary-value problem for parabolic equation with boundary control and with equality and inequality pointwise state constraints. This dual regularization method yields the corresponding necessary and sufficient conditions for minimizing sequences, namely, the stable, with respect to perturbation of input data, sequential or, in other words, regularized Lagrange principle in nondifferential form and Pontryagin maximum principle for the original problem. Regardless of the fact that the stability or instability of the original optimal control problem, they stably generate a minimizing approximate solutions in the sense of J. Warga for it. For this reason, we can interpret these regularized Lagrange principle and Pontryagin maximum principle as tools for direct solving unstable optimal control problems and reducing to them unstable inverse problems.

Ключевые слова: Optimal boundary control, Parabolic equation, Minimizing sequence, Dual regularization, Stability, Lagrange principle, Pontryagin maximum principle.

Язык публикации: английский

DOI: 10.15826/umj.2016.2.008



Реферативные базы данных:


© МИАН, 2024