RUS  ENG
Полная версия
ЖУРНАЛЫ // Ural Mathematical Journal // Архив

Ural Math. J., 2024, том 10, выпуск 1, страницы 123–135 (Mi umj226)

Alpha labelings of disjoint union of hairy cycles

G. Rajasekaran, L. Uma

Vellore Institute of Technology

Аннотация: In this paper, we prove the following results: (1) the disjoint union of $n\geq 2$ isomorphic copies of a graph obtained by adding a pendant edge to each vertex of a cycle of order $4$ admits an $\alpha$-valuation; (2) the disjoint union of two isomorphic copies of a graph obtained by adding $n\geq 1$ pendant edges to each vertex of a cycle of order $4$ admits an $\alpha$-valuation; (3) the disjoint union of two isomorphic copies of a graph obtained by adding a pendant edge to each vertex of a cycle of order $4m$ admits an $\alpha$-valuation; (4) the disjoint union of two nonisomorphic copies of a graph obtained by adding a pendant edge to each vertex of cycles of order $4m$ and $4m-2$ admits an $\alpha$-valuation; (5) the disjoint union of two isomorphic copies of a graph obtained by adding a pendant edge to each vertex of a cycle of order $4m-1$ $(4m+2)$ admits a graceful valuation (an $\alpha$-valuation), respectively.

Ключевые слова: Hairy cycles, Graceful valuation, $\alpha$-valuation

Язык публикации: английский

DOI: 10.15826/umj.2024.1.011



Реферативные базы данных:


© МИАН, 2024