RUS  ENG
Полная версия
ЖУРНАЛЫ // Ural Mathematical Journal // Архив

Ural Math. J., 2017, том 3, выпуск 2, страницы 6–13 (Mi umj37)

Эта публикация цитируется в 4 статьях

Approximation of the differentiation operator on the class of functions analytic in an annulus

Roman R. Akopyanab

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University, Ekaterinburg

Аннотация: In the class of functions analytic in the annulus $C_r:=\left\{z\in\mathbb{C}\, :\, r<|z|<1\right\}$ with bounded $L^p$-norms on the unit circle, we study the problem of the best approximation of the operator taking the nontangential limit boundary values of a function on the circle $\Gamma_r$ of radius $r$ to values of the derivative of the function on the circle $\Gamma_\rho$ of radius $\rho,\, r<\rho<1,$ by bounded linear operators from $L^p(\Gamma_r)$ to $L^p(\Gamma_ \rho)$ with norms not exceeding a number $N$. A solution of the problem has been obtained in the case when $N$ belongs to the union of a sequence of intervals. The related problem of optimal recovery of the derivative of a function from boundary values of the function on $\Gamma_\rho$ given with an error has been solved.

Ключевые слова: Best approximation of operators, Optimal recovery, Analytic functions.

Язык публикации: английский

DOI: 10.15826/umj.2017.2.002



Реферативные базы данных:


© МИАН, 2025