RUS  ENG
Полная версия
ЖУРНАЛЫ // Ural Mathematical Journal // Архив

Ural Math. J., 2017, том 3, выпуск 2, страницы 14–21 (Mi umj38)

On $\Lambda$-convergence almost everywhere of multiple trigonometric Fourier series

Nikolai Yu. Antonov

Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg

Аннотация: We consider one type of convergence of multiple trigonometric Fourier series intermediate between the convergence over cubes and the $\lambda $-convergence for $\lambda >1$. The well-known result on the almost everywhere convergence over cubes of Fourier series of functions from the class $ L (\ln ^ + L) ^ d \ln ^ + \ln ^ + \ln ^ + L ([0,2 \pi)^d ) $ has been generalized to the case of the $ \Lambda $-convergence for some sequences $\Lambda$.

Ключевые слова: Trigonometric Fourier series, Rectangular partial sums, Convergence almost everywhere.

Язык публикации: английский

DOI: 10.15826/umj.2017.2.003



Реферативные базы данных:


© МИАН, 2024