RUS  ENG
Полная версия
ЖУРНАЛЫ // Ural Mathematical Journal // Архив

Ural Math. J., 2018, том 4, выпуск 1, страницы 56–62 (Mi umj55)

Эта публикация цитируется в 5 статьях

A numerical technique for the solution of general eighth order boundary value problems: a finite difference method

Pramod Kumar Pandey

Dyal Singh College (University of Delhi), New Delhi, India

Аннотация: In this article, we present a novel finite difference method for the numerical solution of the eighth order boundary value problems in ordinary differential equations. We have discretized the problem by using the boundary conditions in a natural way to obtain a system of equations. Then we have solved system of equations to obtain a numerical solution of the problem. Also we obtained numerical values of derivatives of solution as a byproduct of the method. The numerical experiments show that proposed method is efficient and fourth order accurate.

Ключевые слова: Boundary Value Problem, Eighth Order Equation, Finite Difference Method, Fourth Order Method.

Язык публикации: английский

DOI: 10.15826/umj.2018.1.005



Реферативные базы данных:


© МИАН, 2024