One-sided $L$-approximation on a sphere of the characteristic function of a layer
Marina V. Deikalova,
Anastasiya Yu. Torgashova Ural Federal University,
51 Lenin aven., Ekaterinburg, Russia, 620000
Аннотация:
In the space
$L(\mathbb{S}^{m-1})$ of functions integrable on the unit sphere
$\mathbb{S}^{m-1}$ of the Euclidean space
$\mathbb{R}^{m}$ of dimension
$m\ge 3$, we discuss the problem of one-sided approximation to the characteristic function of a spherical layer $\mathbb{G}(J)=\{x=(x_1,x_2,\ldots,x_m)\in \mathbb{S}^{m-1}\colon x_m\in J\},$ where
$J$ is one of the intervals
$(a,1],$ $(a,b),$ and
$[-1,b),$ $-1< a<b< 1,$ by the set of algebraic polynomials of given degree
$n$ in
$m$ variables.
This problem reduces to the one-dimensional problem of one-sided approximation in the space
$L^\phi(-1,1)$ with the ultraspherical weight
$ \phi(t)=(1-t^2)^\alpha,\ \alpha=(m-3)/2$, to the characteristic function of the interval
$J$.
This result gives a solution of the problem of one-sided approximation to the characteristic function of a spherical layer in all cases when a solution of the corresponding one-dimensional problem known. In the present paper, we use results by A.G. Babenko, M.V. Deikalova, and Sz.G. Revesz (2015) and M.V. Deikalova and A.Yu. Torgashova (2018) on the one-sided approximation to the characteristic functions of intervals.
Ключевые слова:
One-sided approximation, characteristic function, spherical layer, spherical cap, algebraic polynomials.
Язык публикации: английский
DOI:
10.15826/umj.2018.2.003