RUS  ENG
Полная версия
ЖУРНАЛЫ // Ural Mathematical Journal // Архив

Ural Math. J., 2019, том 5, выпуск 1, страницы 101–108 (Mi umj78)

Asymptotic solutions of a parabolic equation near singular points of $A$ and $B$ types

Sergey V. Zakharov

Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya str., Ekaterinburg, Russia, 620990

Аннотация: The Cauchy problem for a quasi-linear parabolic equation with a small parameter multiplying a higher derivative is considered in two cases when the solution of the limit problem has a point of gradient catastrophe. Asymptotic solutions are found by using the Cole-Hopf transform. The integrals determining the asymptotic solutions correspond to the Lagrange singularities of type $A$ and the boundary singularities of type $B$. The behavior of the asymptotic solutions is described in terms of the weighted Sobolev spaces.

Ключевые слова: quasi-linear parabolic equation, Cole-Hopf transform, singular points, asymptotic solutions, Whitney fold singularity, Il’in’s universal solution, weighted Sobolev spaces.

Язык публикации: английский

DOI: 10.15826/umj.2019.1.010



Реферативные базы данных:


© МИАН, 2024