RUS  ENG
Полная версия
ЖУРНАЛЫ // Ученые записки Ереванского государственного университета, серия Физические и Математические науки // Архив

Уч. записки ЕГУ, сер. Физика и Математика, 2006, выпуск 2, страницы 33–40 (Mi uzeru396)

Эта публикация цитируется в 3 статьях

Mathematics

Начально-краевая задача для одного класса нелинейных уравнений типа Соболева

А. А. Мамиконян

Ереванский государственный университет

Аннотация: В данной работе рассматривается краевая задача с начальным условием
$$\left\{
\begin{array}{l} A\left(\frac{\partial u}{\partial t}\right)+Bu=f,\\ u(0)=u_0,\\ D^{\gamma}u\Big|_{\Gamma}=0, |\gamma|\leq m, \end{array}
\right.$$
и нелинейными дифференциальными операторами $А$ и $В$ следующего вида: $Au=\displaystyle\sum_{|\alpha|\leq m}(-1)^{|\alpha|}D^{\alpha}A_{\alpha}(x,t,D^{\gamma}u),\quad Bu=\displaystyle\sum_{|\alpha|\leq m}(-1)^{|\alpha|}D^{\alpha}B_{\alpha}(x,t,D^{\gamma}u),~~|\gamma|\leq m.$ Мы получаем условия для функций $A_{\alpha}(x,t,\xi_{\gamma})$ и $B_{\alpha}(x,t,\xi_{\gamma})$, при выполнении которых доказывается существование и единственность решения этой задачи в пространствах $L^p(0,T,W^m_p)$ для $р\geq 2$.

УДК: 517.9

Поступила в редакцию: 24.10.2005



© МИАН, 2024