Аннотация:
Устанавливаются условия существования минимального собственного значения, отвечающего положительной собственной функции, нелинейной задачи на собственные значения для обыкновенного дифференциального уравнения. Задача аппроксимируется сеточной схемой метода конечных элементов. Исследуется сходимость приближенных решений к точным. Теоретические результаты иллюстрируются численными расчетами для модельной задачи.
Ключевые слова:собственное значение, положительная собственная функция, нелинейная задача на собственные значения, обыкновенное дифференциальное уравнение, задача Штурма–Лиувилля, метод конечных элементов.