Аннотация:
Множество Гахова $\mathcal G$ представляет собой класс всех голоморфных и локально однолистных функций в единичном круге, имеющих не более одного корня уравнения Гахова. Для ряда известных подклассов однолистных функций при наличии нулевого корня уравнения Гахова дано эффективное описание множества траекторий выхода из $\mathcal G$; такой выход осуществляется при значении параметра, который отвечает неулучшаемой постоянной в соответствующем условии единственности корня. Показано, что выход из $\mathcal G$ может происходить за счет бифуркаций только двух типов: 1) максимум в нуле переходит в два максимума и седло; 2) возникает ненулевое полуседло, распадающееся затем в седло и максимум.
Ключевые слова:гиперболическая производная, конформный радиус, бифуркации критических точек, множество Гахова, класс звездообразных функций, условия подчиненности.