Аннотация:
При изучении физических явлений в пространственных областях, ограниченных сферическими или близкими к ним поверхностями широко применяются шаровые и сферические функции. При этом часто возникает задача преобразования этих функций при параллельном переносе системы координат. Такая ситуация возникает, в частности, при описании гидродинамического взаимодействия сферических или слабонесферических пузырьков газа в неограниченном объеме несжимаемой жидкости. В двумерном (осесимметричном) случае, когда роль сферических функций играют полиномы Лежандра, для осуществления такого преобразования можно воспользоваться хорошо известным компактным выражением. Аналогичные известные выражения в трехмерном случае являются довольно сложными (в них, например, используются коэффициенты Клебша–Гордана), что затрудняет их применение. В настоящей работе приводится вывод такого выражения, который естественным образом приводит к компактной форме входящих в него коэффициентов. Данные коэффициенты являются, по сути, обобщением на трехмерный случай аналогичных известных коэффициентов в двумерном (осесимметричном) случае.