Аннотация:
Рассмотрены многообразия, на которых задана аффинная геометрия общего вида с нетривиальным метрикой, кручением и тензором неметричности. В последнее время такие многообразия привлекают большое внимание в связи с построением обобщенных моделей гравитации. В предположении, что все геометрические объекты являются вещественно аналитическими функциями, построены нормальные координаты в некоторой окрестности произвольной точки путем разложения компонент связности и метрики в ряды Тейлора. Показано, что нормальные координаты являются обобщением декартовой системы координат в евклидовом пространстве на случай многообразий с произвольной аффинной геометрией. При этом компоненты произвольного вещественно аналитического тензорного поля в окрестности каждой точки представляются в виде степенных рядов, коэффициенты которого строятся из ковариантных производных, тензоров кривизны и кручения, вычисленных в точке разложения. Для пространств постоянной кривизны ряды просуммированы в явном виде и найдено выражение для метрики в нормальных координатах. Показано, что нормальные координаты задают гладкое сюрьективное отображение евклидовых пространств на пространства постоянной кривизны. Уравнения экстремалей проинтегрированы в явном виде для пространств постоянной кривизны в нормальных координатах. Проанализирована связь нормальных координат с экспоненциальным отображением.