RUS  ENG
Полная версия
ЖУРНАЛЫ // Ученые записки Казанского университета. Серия Физико-математические науки // Архив

Учен. зап. Казан. ун-та. Сер. Физ.-матем. науки, 2017, том 159, книга 4, страницы 509–517 (Mi uzku1423)

Эта публикация цитируется в 3 статьях

Исследование конечных упругопластических деформаций: алгоритм решения, численные примеры

Л. У. Султанов

Казанский (Приволжский) федеральный университет, г. Казань, 420008, Россия

Аннотация: Работа посвящена разработке методики расчета упругопластических трехмерных тел с учетом конечных деформаций. Кинематика упругопластических деформаций основана на мультипликативном разложении полного градиента деформации на упругую и неупругую составляющие. Напряженное состояние характеризуется тензором напряжений Коши. Физические соотношения получены на основе уравнения второго закона термодинамики с введением функции свободной энергии. Функция свободной энергии записана в виде зависимости от инвариантов левого тензора упругой деформации Коши–Грина. Рассмотрена упругопластическая модель с изотропным упрочнением. На основе аналога ассоциированного закона пластического течения и критерия пластичности разработан метод проецирования напряжений на поверхность текучести с итерационным уточнением текущего напряженно-деформированного состояния. Итерационная процедура основана на введение в разрешающее уравнение мощности дополнительных напряжений. Построены определяющие соотношения для скоростей и приращений истинных напряжений Коши. В рамках метода последовательных нагружений получено вариационное уравнение, основанное на принципе возможных мощностей. Пространственная дискретизация основана на методе конечных элементов, использован восьмиузловой конечный элемент. Представлено решение задачи о растяжении стержня круглого поперечного сечения и дано сравнение с результатами других авторов.

Ключевые слова: нелинейная упругость, конечные деформации, пластичность.

УДК: 539.3

Поступила в редакцию: 29.08.2017



Реферативные базы данных:


© МИАН, 2024