RUS  ENG
Полная версия
ЖУРНАЛЫ // Ученые записки Казанского университета. Серия Физико-математические науки // Архив

Учен. зап. Казан. ун-та. Сер. Физ.-матем. науки, 2018, том 160, книга 2, страницы 293–299 (Mi uzku1454)

Эта публикация цитируется в 2 статьях

Spectral order on unbounded operators and their symmetries

[Спектральный порядок на неограниченных операторах и их симметрии]

J. Hamhaltera, E. A. Turilovab

a Czech Technical University in Prague, Prague, 160 00 Czech Republic
b Kazan Federal University, Kazan, 420008 Russia

Аннотация: В работе рассмотрен спектральный порядок на положительных неограниченных операторах, присоединенных к алгебре фон Неймана. Физический смысл спектрального порядка состоит в сравнении функций распределения квантовых наблюдаемых. С математической точки зрения спектральный порядок интересен, кроме всего прочего, тем, что организует множество положительных неограниченных операторов, присоединенных к алгебре фон Неймана, в полную решетку. В предыдущих исследованиях авторами было получено описание преобразований, сохраняющих спектральный порядок в случае ограниченных операторов. В настоящей работе приводятся новые результаты по описанию преобразований, сохраняющих спектральный порядок, в случае положительных неограниченных операторов, присоединенных к алгебре фон Неймана. Ранее было показано, что любой спектральный автоморфизм (биекция, сохраняющая спектральный порядок в обоих направлениях) на множестве положительных неограниченных операторов, действующих в гильбертовом пространстве, представим в виде композиции функционального исчисления с естественным продолжением автоморфизма на решетке ортопроекторов. В работе показано, что это утверждение неверно для алгебры фон Неймана, имеющей нетривиальный центр. Но для произвольной алгебры фон Неймана получено описание спектральных автоморфизмов, сохраняющих операторы, кратные ортопроекторам.

Ключевые слова: спектральный порядок, неограниченные операторы.

УДК: 517.986

Поступила в редакцию: 21.11.2017

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024