RUS  ENG
Полная версия
ЖУРНАЛЫ // Ученые записки Казанского университета. Серия Физико-математические науки // Архив

Учён. зап. Казан. гос. ун-та. Сер. Физ.-матем. науки, 2006, том 148, книга 3, страницы 94–108 (Mi uzku562)

Эта публикация цитируется в 1 статье

Краевые задачи Дирихле и Неймана для уравнения Гельмгольца в неограниченных областях с кусочно-гладким участком границы

Е. К. Липачев

Казанский государственный университет

Аннотация: Исследованы краевые задачи, моделирующие рассеяние волн областью с неровной границей. Предполагается, что область совпадает с полуплоскостью, за исключением конечного участка границы, который называется неровным и описывается кусочно-гладкой функцией, причем точки нарушения гладкости имеют особенности типа рёбер. Доказаны теоремы существования и единственности решения краевых задач. Получены интегральные уравнения второго рода и доказана эквивалентность этих уравнений поставленным краевым задачам. Предложен алгоритм приближенного решения задач рассеяния, основанный на методе сплайн-подобластей решения интегральных уравнений. Проведено обоснование алгоритма приближенного решения краевых задач.

УДК: 517.958:537.8

Поступила в редакцию: 09.10.2006



Реферативные базы данных:


© МИАН, 2024