Аннотация:
Исследованы краевые задачи, моделирующие рассеяние волн областью с неровной границей. Предполагается, что область совпадает с полуплоскостью, за исключением конечного участка границы, который называется неровным и описывается кусочно-гладкой функцией, причем точки нарушения гладкости имеют особенности типа рёбер. Доказаны теоремы существования и единственности решения краевых задач. Получены интегральные уравнения второго рода и доказана эквивалентность этих уравнений поставленным краевым задачам. Предложен алгоритм приближенного решения задач рассеяния, основанный на методе сплайн-подобластей решения интегральных уравнений. Проведено обоснование алгоритма приближенного решения краевых задач.